Component diagrams

Components

* Components are model elements that
represent independent, interchangeable
parts of a system.

— Components are more abstract than classes and
can be considered to be stand-alone service
providers

* They conform to and realize one or more
provided and required interfaces, which
determine the behavior of components.

* Components make a system more reusable,
scalable, and flexible.

Components

* Components provide a service without regard
to where the component is executing or its
programming language
— A component is an independent executable entity

that can be made up of one or more executable
objects

 Components can range in size from simple
functions to entire application systems

[Sommerville, 2000]

Components

* The internal structure of the component must
be hidden and independent.

— No dependencies can exist between the contents of
the component and external objects (i.e., internal
objects do not know external objects).

* Components must provide interfaces so that
external objects can interact it with them.

* Components must specify their required
interfaces so that they have access to external
objects.

Components

Have a name (or path name)
Have interfaces

* Their interface is published and all interactions are through
the published interface

Can have stereotypes
— Executable, library, table, file, document
Are substitutable: can be replaced at design time or

run-time by another that offers equivalent
functionality based on compatibility of its interfaces

«component» «component» 'E:I
Order Order Order
All they mean the same: a component Order
UML version 2.0 5

Interfaces (in general)

An interface is a collection of operations that
specify a service offered by a class or a
component

Classes realize an interface and can contain
additional operations

Each interface represents a role played by a
class

Interfaces allow different views of a class used
by different clients

Interfaces are used as “glue” in component-
based software

Component's Interfaces

attributes

— defining a cohesive set of behaviors

Provided Interfaces

Interface = classifier with operations, but no

— Defines the services that are provided by the component to

other components

Required interfaces

— Specifies what services must be made available for the
component to execute as specified

symbol

Interface's name is placed near the interface

Component's Interfaces

«component» gl
Order

«provided interfaces»
OrderEntry
AccountPayable

«required interfaces»
Person

e Equivalent notations

Required interface
(a.k.a. sockets)

OrderEntry

Oi

AccountPayable

Oi.

~

N\

«component» gl Person i

Order

Provided interface

Components and Interfaces

* A provided and required interface can be connected if
the operations in the latter are a subset of those in
the former, and the signatures of the associated
operations are ‘compatible’

* Aninterface realized by a component is called
exporting interface, i.e., an interface that the
component offers as a service to other components

* An interface used by the component is the importing
interface

* A component may import and export several
interfaces

* Aninterface offered by a component is realized by
classes that the component implements

What is a Component Diagram?

* Models the software architecture of the
system, also providing a view of their physical
software components, their interfaces, and
their dependencies.

* Their main purpose is to show the structural
relationships between the components of a
system. [IBM Rational Libraries]

* They are composed of components, interfaces
and relationships among them (dependency,
generalization, association, realization)

10

Example

Customer_ookup

Customer_ookup Repository

Producl,&messorl\

% P roduct&ccessor

Invertory E]
System

Relationships among components: the lollipop and socket notation
can also include a dependency arrow (as used in the class diagram).
The dependency arrow comes out of the consuming (requiring)

socket and its arrow head connects with the provider's lollipop
11

Ports

» A port (feature of a classifier): specifies a distinct
interaction point between the classifier and its
environment

* Ports:
— depicted as small squares on the sides of classifiers
— can be named

— can support unidirectional and bi-directional
communication. (Student component implements three
ports: two unidirectional and one bi-directional)

Output port
Sfok_dpm—nms\"’*lﬂ

< .t“"\ FecessConta)
tudent Eﬂayffm bi-directiona
&« port

Input port
Df-&ag, 12

Ports (showing connectors)

<<component>> <<component>>

t
PictureEditor P GUI
MouselListener
DrawingStorage /<} - {)} —L § GUIComponent
Mouselistener
delegation /

DrawingEngine pien oo Window l@——2-"| Button

* The ports and connectors specify how component
interfaces are mapped to internal functionality

* Note that these ‘connectors’ are rather limited (special
cases of those considered in software architectures)

[David Rosenblum, UcL] 13

Components of components

* A component can be composed of other components.

Compatible interfaces

«component» @
Store
OrderEntry
© «delegate»
«component» @ Person «component» @
= Voumu O
OrderEntry :Order Person :Customer
Orderableltem Account i
S \Wgate»
Orderableltem T \D C
Account
«componem» @
:Product

14

Components vs Classes
Classes represent logic abstractions

Components implement a set of logic elements (e.g. Classes
— Classes can be mapped into components
Classes may have attributes and operations

Components have (public) operations that can only be
accessed through their interfaces

«component»
Order gl
OrderHeader
OrderEntry
order 1 C
o .
item * Person
Lineltem
15
«oomponem»a k " @
; Order
Account ——oO.
account .
«focusy
5\ T RS OrderHeader
AccountPayable
Jordereditem «component»
1
— Product
*
Lineltem

Orderableltem

16

Building a component diagram

e Top-down
— Nice to give an early “landscape” of the project
* Helps to support team distribution work (from beginning)

— Dangerous as it “promotes” over-architecting, over-
designing
* Bottom-up

— Nice when we have a collection of classes and
decide to “componentize” our design

— Nice to rescue reusable functionality out of an
existing application

— Nice to distribute work between subteams.

— (Guidelines next) 17

Build components: guidelines

Keep components cohesive

Assign interface/boundary classes to application components
Assign technical classes to infrastructure components

Define class contracts

Assign hierarchies to the same component

Identify (business) domain components

N o u s wN e

Identify the “collaboration type” of business classes
a) Server classes belong in their own component

b) Merge a component into its only client

c) Pure client classes don’t belong in domain components

8. Highly coupled classes belong in the same component
9. Minimize the size of the message flow between components
10. Define component contracts

[The object primer: agile model-driven development with UML 2.0, Scott W. Ambler]
18

Keep components cohesive

* A component should implement a single,
related set of functionality.

* This may be:
— the user interface logic for a single user
application,
— business classes comprising a large-scale domain
concept, or

— technical classes representing a common
infrastructure concept

19

Assign user interface classes to
application components

» User interface/boundary classes should be
placed in components with the application
stereotype.

— These classes implement screens, pages, or reports,
as well as those that implement “glue logic” such as
identifying which screen/page/... to display

* InJava these types of classes would include Java
Server Pages (JSPs), servlets, and screen classes
implemented via user interface class libraries

such as Swing
20

10

* Technical classes should be assigned to

Assign technical classes to
infrastructure components

components which have the infrastructure
stereotype.

— Technical classes: implement system-level services
such as security, persistence, or middleware

21

N

Seminar il

Management
<>

Student gl

Administration
<<Ul=>

User interfaces assigned to application components

Infrastructure component

DataAccess g
O Facilities
Facilities,
Encrypti
O ryption
O_.
P Security
= DataAccess gJ Access Conrol =<infrastructure=>
s O— (@
—_
N ‘“Studego_
N7~
N B
N ot s g]
\Da‘aAcc Persistence
Persistence <jj >
_}YSemin ister <<infrastructure>]
e — [LL.'7g — |
N\ I \
<<compom.~m>><_j \
DataAcce: <<requyires>
Scheduk Schedule \
chedule g]
University DB !

<<database>>

22

JDg

11

Define class contracts

* A class contract is any method that directly
responds to a message sent from other
objects.

— For example, the contracts of the Seminar class
likely include operations such as enrollStudent()
and dropStudent().

* To identify components, all the operations
that aren’t class contracts can be ignored

— As they don’t contribute to communication
between objects distributed in different
components

23

Assign hierarchies to the same
component

* 99.9% of the time it makes sense to assign all
of the classes of a hierarchy (inheritance
hierarchy or composition) to the same
component

24

12

Identify (business) domain
components

* (Business) domain component is a set of classes that
collaborate among themselves to support a
cohesive set of contracts.

* Because we want to minimize the network traffic to
reduce response time of our application we want to
design our components so that most of the
information flow occurs within the components and
not between them.

25
4 1N
DataAccess g \
Facilities
Facilities, \
Encryption
~ rypo—
il s i Security)
Seminar > DataAccebs gJ Access Control <<infrastructure>>
Management § s d (@
<> ~ e \
N i
N
o b < g
gl pHarc Semi Persistence
Student N Semi I Persistence | <<infrastructure>>
Administration p— — — -‘Y F— \
<> \ | \
<<oomponent>> lc \
DataAcce: <<requyires>
Scheduk Schedule \
Cl uie a
\ University DB \E
\/ <<database>> JDH

Students, Facilities, Seminar, Schedule are

Business Domain Components o6

13

Identify the “collaboration type” of
business classes

* To determine which domain component a
business class belongs to identify its
distribution type:

— Server class: receives, but doesn’t send, messages

— Client class: sends, but doesn’t receive, messages

— Client/server class: both sends and receives
messages

» After identified the distribution type of each
class, you are in a position to start identifying

potential (business) domain components.
27

Server classes belong in their own
component

* Pure server classes belong in a domain
component and often form their own domain
components

— they are the “last stop” for message flow (use case
execution) within an application

28

14

Merge a component into its only
client

If you have a domain component that is a
server to only one other domain component,
you may decide to combine the two
components

29

Pure client classes don’t belong in
domain components

* Client classes do not belong in a domain
component as they only generate messages

— as the purpose of a domain component is to
respond to messages.
 Client classes have nothing to add to the
functionality offered by a domain component
and very likely belong in an application
component instead

30

15

Highly coupled classes belong in
the same component

* If two or more classes collaborate frequently,
they should probably be in the same domain
component to reduce the network traffic
between the two classes.

— Especially when the interaction involves large
objects (as parameters or received as return
values).

* The basic idea is that highly coupled classes
belong together.

31

Minimize the size of the message
flow between components

* Client/server classes belong in a domain
component, but there may be a choice as to
which domain component they belong to.

* Choose so that communication between
components will be low
— Merge a component into its only client

32

16

Define component contracts

* Each component will offer services to its
clients, each such service is a component

contract
e el Define contracts <<component>>
PictureEditor GUI
—~
DrawingStorage GUIComponent \
A
- composite structures - [|
DrawingEngine \‘Qndow 0" Button
%
-

Highly coupled classes 33

Do you feel strong?

dor) void

34

17

Draw a component diagram

35

Deployment diagrams

36

18

Deployment diagram

* Models the run-time architecture of a system

* Depicts a static view of the run-time
configuration of processing nodes, visualizing
the distribution of the components running on
those nodes

— Ex. nodes: server, client, modem, printer, etc.

* Deployment diagrams show: the hardware,
the software that is installed on that
hardware, and the middleware used to
connect the disparate machines to one

|
another! 57

Nodes and connections

* Deployment diagrams include notation
elements used in a component diagram, plus

* nodes which represent either a physical
machine or a virtual machine (e.g., a mainframe
node)

— they are represented as 3-D boxes and can be
processors (e.g. server) or devices (e.g. modem)

* and connections (dependencies and
associations)

— are represented with simple lines, and are assigned

stereotypes to indicate the type of connection
38

19

* Node

Nodes

—a physical object that represents a
processing resource

—generally, having at least a memory and

often processing capability as well

39

«device»
:AppServer

«executionEnvironment»
:J2EEServer
Order.jar

ShoppingCart.jar
Account.jar
Product.jar
BackOrder.jar

Service.jar

«device»
:DBServer

OrderSchema.ddl

ltemSchema.ddl

40

20

Deployment diagram

Deployment
diagram for a
network,
depicting
network
protocols as
stereotypes,
and
multiplicities at
the association
ends

dd Network Model /

firewall EI

local network

f

|1
«wethernets
1

primary H
server

|1

«ethernets

Deployment diagram

dd Embedded Model /

:Motherboard

wexce cutabl@
app.exe

1 «connectors» 4

:Keyboard

:LCDDisplay

1 «connectors» 4

Deployment diagram for part of an embedded
system, depicting an executable artifact as
being contained by the motherboard node

42

21

Deployment diagram
clients

servers

<<internet>>

console \

. <<processor>>
<<internet>>

kiosk

Packages being used to structure two types of
nodes

43

* Physical nodes should be labeled with the stereotype <<device>>.

* Connections between nodes are represented with simple lines, and
are assigned stereotypes such as <<RMI>> and <<message bus>>
to indicate the type of connection.

<<device>
:ApplicationServer

:WebServer <<RMI>> 1OS=Solaris} <<JDBC>> <<device>>
iDBServer
: EJBContainer {OS~LinuX}

student [

Administration :
<<JSPs>> Student g University DB g
<<databasc>>
{vendor=Oracle}

Schedule

<<deployment spec=>
Registration
exccution: thread
nestedTransaction: true

Persistence [<<message bus>> <<device=>
<<infrastructure=> Mainframe
tvendor=Ambysoft} [OS=MVS}

Course
Management
<<legacy system>>
Course
Management
Facade

<<web services>>

44

* Better, more concise example. Software elements are listed by
their physical filenames (developers will be interested in this).

* Adrum is used as a visual stereotype for the University DB
database, making it easier to distinguish on the diagram.

<<device=>

N

:ApplicationServer \—j—/
iWebServer <<RMI>> {OS=Solaris} <<JDBC>> (L!n(_-;:;glglj:lﬁli W
studentAdministration.war : EJBContainer L\c\l\ic;::::;x:;‘lc
ez = nS?
student.car
i
registration.xml <<deployment spec>>
persistenceFramework.car
courseManagement.jar
<<message bus>>
<<device=>
Mainframe
{OS=MVS}
Course Management <<legacy system=>> 45
Deployment diagram
* Used to model
—client-server systems
—distributed systems
—embedded systems
<<internet>> <<JDBC>>
Client * Server DBserver
46

23

Still feeling strong?

o ; s .
-idParque : Integer - = - o — -
lHocalizacao - String \ Funciondrio
e b \ nvaint: W nconari < supordsor Fundonar)
eDonhes ogr N P
. L e ; \ P uncondro: tger .
- +actualizarLugares() F o~ A\ morada : String
rLugares() e~ X +Funcionério(
ey e N
T sdecromentrtugoresd oot .
ncLugmesaemmiven) h 1
1 . N
s | \ .
< e Enirada .
\ = 1 \
< [HEmdaseger | .
! X “dataEntada - Date wser \
N SoraEnradaRes k — — — — 4— = o ' ntarface Parqus 8]
1 enaga) S 1 s Tartaro \
i \eisen { Rencenaca(i4) N . eraTartirioy \
\ ~ . removerTariro() son
! = +inser
) N E o ~ I +alter \
| \ saida Controlo Saida “removerHorario \
' \ dsaida: ioge +geriSaita(K : dentfcador) o ~alerarocaleacao(local : Sing) vod :
1 . g | Secnarparaue() o
| « 1 horasaida - Real encerrarParque() : void \
wuser Identificador prom _ \
! ‘dld ificador Inte S Al 4
k esidldonifcador-Bolean - \ /)
‘mndlusnnhc:aavu ¢~ e \
! ferE stadoldentificador() - . - / \uuser suses 7
, PRI P / \ /
| wusen /. A . , 4 inserirFuncionario()
!)/ N 7 B o)
| Waina » , o by
| FebieCance - vod , Tatério
ry regoHora : Real
~dotactaPassager() : booean / el
ieVerde(:vou /
B0t o , Sechsarerese
foadia): ontir

iorProco()

|
|

[G @) | ansor [CSwmioo @] |

abriCancolal) ~vod | | +eteciarPassagem(-voil| [vuzVerde() vord

iecharCancela() - void

.]
*displayMsg(m :String) - void
+uzAmarela() - void

47

Which deployment diagram woul
you propose?

* Do it for the component diagram of that class
diagram

48

How Many Diagrams Needed?
* Depends:

—We use diagrams to visualize the system from
different perspectives.

—No complex system can be understood in its entirety
from one perspective.

—Diagrams are used for communication

* Model elements will appear on one or
more diagrams.

—For example, a class may appear on one or more class
diagrams, be represented in a state machine diagram,
and have instances appear on a sequence diagram.

—Each diagram will provide a different perspective. 49

Sources

Agile Modeling
IBM'’s Rational Library

The object primer: agile model-driven
development with UML 2.0, Scott W. Ambler

UML 2.0 Superstrcture
UML 2.0 Infrastructure

50

25

